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ABSTRACT
Retrieval of Surface Soil Moisture (SSM) over large scales at
high spatial resolution is crucial for numerous applications.
Existing solutions rely on the analysis of remote sensing plat-
forms or in situ measurements that are either too coarse in
their resolution or too localized to address the aforementioned
need. In this work, we propose a novel deep learning ap-
proach for reliably estimating SSM at a high spatial reso-
lution of 1 km over broad regions. To achieve this objec-
tive, the proposed framework employs a Convolutional Neu-
ral Network that can capture both multi-modal and spatial
correlations. Introducing a novel loss function, the proposed
scheme can leverage limited in situ observations while also
generating estimates consistent with physical models. This
is achieved through the utilization of coarse-resolution data
assimilation estimates. For training and assessing the perfor-
mance of the proposed framework, a novel dataset is gener-
ated by combining information from remote sensing, in situ
measurements, and data assimilation estimates. Experimental
analysis demonstrates that the proposed approach can provide
accurate retrieval of SSM, significantly outperforming exist-
ing products.

Index Terms— deep learning, soil moisture, data assimi-
lation

1. INTRODUCTION

Residing at the land-atmospheric boundary, surface soil mois-
ture (SSM), i.e., volumetric water content at the top 5 cm of
soil, has a profound effect on Earth’s water and energy cy-
cles, playing a critical role in weather prediction and climate
modeling [1]. Therefore, estimation of SSM at a high spa-
tial and temporal resolution on a global scale is fundamental
for understanding hydrometeorological water and energy flux
processes [2]. To achieve a reliable estimation of SSM, three
main sources of data are available, namely, observations from
remote sensing platforms, measurements from in situ sensor

This work was supported by the TITAN ERA Chair project (contract no.
101086741) within the Horizon Europe Framework Program of the European
Commission.

networks, and estimates generated by physics-driven data as-
similation processes [3, 4].

In the case of remote sensing, several platforms, including
the ASCAT, AMSR-E, SMOS, and SMAP, have been consid-
ered for SSM retrieval [3]. In such instances, observations un-
dergo processing through various algorithms to extract the de-
sired physical variables from raw observations. This process
often relies on specific models, such as the tau-omega radia-
tive transfer model, particularly in the context of microwave
brightness temperature observations [5]. Unlike remote sens-
ing methods, in situ sensor networks such as ISMN [6] can de-
liver precise retrievals with exceptionally high temporal res-
olution. Nevertheless, these in situ observations are highly
localized. Finally, measurements are integrated with physical
laws, such as the governing equations for soil water flow, to
estimate SSM on a global scale through data assimilation pro-
cesses [7, 8]. Despite the potential of data assimilation mod-
els, the accuracy of estimations is constrained by the quality
of the forcing data and the parameterization of physical rules,
which may be incorrect, while also suffering from coarse res-
olution estimations [9].

Although application-dependent, a spatial resolution of 10
km and a temporal resolution of 2 to 3 days has been consid-
ered adequate for tasks like resolving hydro-meteorological
water and energy flux processes at global scales. While the
retrieval of SSM at a broader scale is valuable, regional and
local studies, particularly those addressing agricultural crop
yield prediction and intelligent irrigation management, neces-
sitate SSM estimation at a resolution of at least 1 km or finer.
This accommodates the specific spatial characteristics of each
region [10, 11].

In this paper, we present a novel SSM retrieval approach,
capable of producing high spatial resolution retrievals, by in-
tegrating all three sources of data, namely in situ, remote sens-
ing, and data assimilation. The proposed approach is based on
the introduction of Deep Learning and more specifically, Con-
volutional Neural Networks (CNNs) which can seamlessly
encode both spatial and inter-modality correlations. A signif-
icant innovation in this study is the introduction of a compos-
ite loss function, which effectively accounts for the disparity



between localized in situ measurements and coarse-resolution
data assimilation estimates. To train and validate the proposed
approach, we produced a new analysis-ready dataset that in-
tegrates observation from remote sensing platforms, specifi-
cally from the SMAP radiometer, and Sentinel 1 radar, in situ
observations from ISMN, data assimilation estimates, and an-
cillary data, co-registered and re-mapped to 1 km EASE-Grid
2 resolution for June of 2017, 2018, and 2019.

2. STATE-OF-THE-ART

Recently, a new paradigm in remote sensing observation
analysis considers data-driven approaches based on ma-
chine learning models for the retrieval of various geophys-
ical characteristics, ranging from land cover and surface
temperature to water quality, among others [12]. Success-
ful paradigms extensively applied for remote sensing-based
SSM retrieval encompass methodologies like random forests
(RF), support vector regression (SVM), and artificial neural
networks [13, 14].

In recent years, the field of machine learning has been
taken by storm by a class of methods based on recent ad-
vancements in neural networks collectively known as Deep
Learning. Deep Learning methods were explored for re-
trieving SSM from SMAP observations [15] to quantify the
ability to extend the availability of estimations beyond the
platform’s operational lifetime. To capture the information
encoded in time series, Long Short-Term Memory networks
were explored for SSM estimation using SMAP and MODIS
observations [16].

CNNs represent a distinct departure from traditional ma-
chine learning approaches for SSM. Unlike methods that
solely consider independent spatial locations for retrieval,
CNNs retain and leverage information encoded in spatial
correlations. CNNs were utilized for SSM retrieval from the
AMSR-E brightness temperature measurements which were
trained to predict the SSM estimated from the European Cen-
tre for Medium-range Weather Forecasts (ECMWF) model
in [17]. CNNs were recently considered in [18] for SMAP
downscaling, which was found to perform better compared
to SVMs and RFs. A successful CNN architecture called
ResNet was considered in [19] where it was found to achieve
higher retrieval accuracy compared to random forests.

A CNN was employed for downscaling SMAP radiome-
ter brightness temperature measurements, focusing only on
the period when both SMAP radar and radiometer were op-
erational [20]. In [21], a CNN model was proposed for SSM
estimation from SMAP, however, this model did not assume
the availability of in situ observations or observations from
multiple satellite platforms. This work was extended in [22]
to include both SMAP and Sentinel 1 observations. In [23],
a Generative adversarial network was introduced in conjunc-
tion with a physics-based tau-omega model for retrieval.

3. PROPOSED APPROACH

Our modeling framework considers three data sources, namely
in situ, remote sensing, and data assimilation generated data.
The primary objective of the proposed SSM retrieval scheme
is to establish a mapping from remote sensing observations
to surface-level soil moisture values. This mapping aims to
ensure that the estimated values align with both in situ ob-
servations and data assimilation estimates. Fig. 1 provides a
high level block diagram of the proposed framework.

Fig. 1. Block diagram of the proposed framework: Remote
sensing observations from SMAP at 9 km, Sentinel 1 at 1
km, and ancillary measurements are incorporated into the
CNN model. The model initially produces high spatial res-
olution SSM estimations and subsequently generates a lower-
resolution version.

To formulate the problem within a learning framework,
it is essential to establish the concepts of training/validation
examples that will be presented to the machine learning sys-
tem. Given the input X ∈ Rm×m×k, the objective of the
proposed approach is to predict Y ∈ Rm×m where m corre-
sponds to spatial indexing and k to the dimensionality of the
input signal. Effectively, for a given target resolution, each
spatial location i, j, corresponds to a grid cell of fixed spatial
resolution. Nevertheless, Y, the actual SSM for every loca-
tion on a 1 km grid within a specific region is not accessible,
neither during the training nor the validation phases.

To address the lack of proper ground-truth target values,
we consider two different sources of data as reliable proxies
to these values, namely the measurements from the in situ
sensors at 1 km, denoted by SΩ, and estimations derived from
the data assimilation platform denoted by Z ∈ Rn×n, where
n is the index at the coarse resolution. Given that the spatial
resolution of data assimilation models is significantly lower
than the target resolution, for the sample region, n ≤ m.

In the ideal case, the objective is to use training data to
produce a function f(w) : X Y−→, where w are the weights
of the CNN. To obtain a reliable mechanism for translating
remote sensing observations to geophysical values, the pa-
rameters w of the CNN model f must be estimated. This
is achieved by minimizing the error between estimated and



measured (in situ) SSM values and is encoded in the function

L1 = ∥PΩ(Ŷ )− PΩ(S)∥22 (1)

where PΩ(·) is the sampling operator which only retains the
values at locations where in situ measurements are available.

In addition to minimizing L1 which focuses on high qual-
ity estimation using point-like ground-truth, we also intro-
duce L2 to match the predicted SSM at image-level, but at
a courser-resolution of 9 km, to the estimated SSM in the L2
product:

L2 = ∥Z−D(f(X;w))∥22, (2)

where D is a downsampling operator responsible for generat-
ing a coarse resolution estimation of Y. More specifically, the
spatial subsampling operator D corresponds to filtering the
high resolution estimated SM with a low-pass filter to remove
high frequency components before applying spatial subsam-
pling through an average pooling operation.

Combining the loss functions in Equations 1 and 2, a
novel composite loss function can be created. In this case, the
objective is expressed as

min
θ

L(w) = min
w

(
L1(w) + αL2(w)

)
, (3)

where α is a regularization parameter controlling the impact
of data assimilation versus in situ measurements. In our ex-
periments α was set to 10−3.

To achieve the sought-out objective, we designed a deep
neural network for the specific task. The proposed network
is 31-layer CNNs with 53.000 parameters. The architecture
is similar to a U-Net architecture, featuring an encoding and
a decoding part. The architecture is segmented into blocks
of 3D convolutions, each followed by pooling for downsam-
pling, and subsequent upsampling layers. Input corresponds
to 3D image patches of size 256×256×13 at high resolution
(1 km) while two outputs are produced both of size 256×256,
the first one corresponding to high spatial resolution output
(1 km) and the second to the coarse resolution (9 km).

4. EXPERIMENTAL ANALYSIS

4.1. Data sources

To train and validate the proposed approach, we generated a
first-of-its-kind analysis-ready dataset for remote-sensing soil
moisture estimation. The data sources used in our analysis in-
clude active and passive microwave remote sensing observa-
tions, ancillary data, and in situ measurements. Specifically,

• Coarse-resolution (9 km) brightness temperature TB

observations at horizontal and vertical polarization
from the NASA SMAP L-band radiometer (1 km or
better)

• Fine-resolution (1 km) SAR backscatter (sigma-0) im-
agery at horizontal and vertical polarization from the
ESA C-band Sentinel-1A/B satellites.

• In situ observations from the U.S. Climate Reference
Network (USCRN) and the SNOTEL network that are
part of the ISMN network, comprising a set of 114 and
415 sensors, respectively, distributed across the Conti-
nental United States (CONUS).

• Data assimilation products, specifically, the SMAP L4
Surface and Root Zone Soil Moisture Geophysical Data
product (SMAP L4 SM) 1. The algorithm employs an
ensemble Kalman filter to integrate SMAP 9 km down-
scaled brightness temperature observations with SM es-
timates from a customized version of the NASA God-
dard Earth Observing System (V5) Land Data Assimi-
lation System (LDAS).

• Ancillary observations, and more specifically: land sur-
face temperature from the NASA GEOS-5; vegetation
water content from MODIS; clay fraction and bulk den-
sity from SoilGrid; land cover type from the MODIS
IGBP product; elevation from the SRTM product; and
precipitation from the GPM mission.

4.2. Satellite derived SSM product

The baseline model for SSM retrieval is the 9 km SMAP L2
product produced by the Backus-Gilbert optimal interpolation
scheme. In addition to the baseline model, we also consider
the high resolution enhanced L2 product which combines the
SMAP L-band radiometer data with Sentinel-1 C-band radar
data [24]. This product contains calibrated, geolocated, time-
ordered brightness temperature during 6:00 a.m. descending
(and 6:00 p.m. ascending) half-orbit passes and Sentinel 1
C-band backscatter coefficients, transformed to sigma-naught
(σ0) values, at a spatial resolution of 1 km.

4.3. Experimental results

We consider observations from CONUS and focus on June
2017, 2018, and 2019. All datasets are georeferenced at the
same 1 km EASE-2 grid. We consider locations where a valid
measurement is available, either from a single sensor or the
average value from multiple sensors, and use this value as the
expected value for this location (1km grid cell).

To quantify the performance, the entire dataset was split
into training and validation sets. To produce the training set,
70% of the sensors were used as training examples, while the
remaining 30% were employed for validation. To quantify the
performance, we employ the unbiased Root-Mean-Squared
Error (ubRMSE) metric.

Fig. 2 presents the evolution of SSM retrieval error as a
function of the training epoch of the proposed CNN, while

1Reichle, R., G. De Lannoy, R. D. Koster, W. T. Crow, J. S. Kimball, and
Q. Liu. 2021. SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root
Zone Soil Moisture Analysis Update, Version 6. Global. Boulder, Colorado
USA. NASA National Snow and Ice Data Center Distributed Active Archive
Center. doi: https://doi.org/10.5067/6P2EV47VMYPC. 11/2021.



also including the retrieval error for the enhanced SMAP L2
product which incorporates Sentinel 1 observations at 1 km.
Note that this error is measured with respect to the values
acquired by the specific set of in-situ sensors (and not cal/val
sites that are employed in SMAP). The figure demonstrates
that the proposed approach outperforms the existing SMAP
product by a large margin both for the case of training and
validation datasets, although effects of overfitting are present
in the model. Furthermore, the results also indicate that the
proposed approach does not suffer from bias, unlike the case
of the SMAP product.

Fig. 2. Retrieval error (RMSE and ubRMSE) for the pro-
posed model as a function of training epoch. The enhanced
SMAP/Sentinel 1 L2 product at 1 km is also included for ref-
erence.

Fig. 3 provides an illustrative visualization of the de-
rived SSM for a region in North Dakota, USA (46°46’01”N,
100°55’01”W). The figure presents the inputs (top left SMAP
brightness temperature, top right Sentinel 1 backscatter), and
retrieval at 1 km (middle left SMAP, middle right proposed)
and at 9 km (bottom left SMAP, bottom right proposed). One
can note the coarse band of higher SSM values in the coarse
SMAP product in contrast to the smooth transition in the case
of the proposed scheme.

Finally, in Fig. 4, a scatter plot comparing the retrieved
and measured (from in situ) SSM values is depicted for both
the training and validation sets. The outcomes suggest that the
proposed scheme exhibits exceptional performance with the
training data. However, for the validation data, some perfor-
mance degradation is noticeable, although it is considerably
less compared to the SMAP L2 product, which is character-
ized by substantial underestimation.

5. CONCLUSIONS

We demonstrated how utilizing coarse-resolution products
generated by physics-driven data assimilation models and in-
situ measurements from ground-based sensor networks can

Fig. 3. Visualization of input data (top row), SSM estimates
at fine resolution (middle row), and SSM estimates at coarse
resolution (bottom row).

Fig. 4. Scatter plot of retrieval SSM against in situ measure-
ments for the proposed and the SMAP L2 product.

be efficiently integrated under a deep learning framework for
soil moisture retrieval. Note that although the focus on soil
moisture retrieval, the proposed framework can be readily
applied for the retrieval of other climate variables like land
surface temperature.
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